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A version of the non-local theory of disordered composites (of randomly disordered media in a broad 

sense), which is constructed in terms of effective characteristics, is proposed. The latter are functions of 

a wave vector and frequency which enables one to describe the effects of spatial and frequency 

dispersion in wave propagation. The propagation of elastic waves solely taking account of frequency 

dispersion is investigated since little attention has been paid to this question. Results are obtained in 

the strong dispersion approximation, which corresponds to the long-wave but high-frequency 

approximation. 

SPATIAL and frequency (time) dispersion occurs when elastic waves propagate in composites. 
While there is a quite extensive literature on the first problem ([l-6] and others), the second 
problem has not been sufficiently investigated [7]. Media with weak spatial dispersion which 
obey one of the versions of the couple theories of elasticity [8, 91 have been considered in the 
papers mentioned, although in [5], which takes account of the non-local properties of a micro- 
inhomogeneous medium, no constraints whatsoever are imposed on the wavelength of the 
waves. 

It is of interest to construct a successively non-local theory of disordered composites which 
contains the local (zeroth approximation) and couple theories (the first approximation) and 
enables one to treat the two forms of wave dispersion within the framework of a universal 
formalism. Only frequency dispersion is considered below. The problem of spatial dispersion 
can also be treated within the framework of the formalism proposed. 

1. STATEMENT OF THE PROBLEM 

We will consider a two-phase composite material based on a matrix in which inclusions of 
the second phase of approximately equiaxial form are randomly distributed. The coupling 
between the phases is assumed to be ideal and the phases themselves are assumed to be 
isotropic. The effective characteristics of the composite, which describe its dynamic elastic 
behaviour are to be determined. 

Let us assume that, in the long wavelength approximation, the composite, as a macroscopic- 
ally and statistically homogeneous material, complies with the non-local theory of elasticity. In 
the non-local theory, an arbitrary characteristic a* is an integral operator with respect to the 
spatial and time variables. The kernel of this operator is of the difference type, and its Fourier 
transform can be represented by a power series in the wave vector k and frequency w. For an 
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isotropic medium, in the expansion (henceforth summation is carried out over repeated 
indices) 

a * (k; W) = a0 + a2 ijktkj t a2’w1 t . . . WI 

the zeroth approximation a, determines the effective characteristic of the local theory while 
the subsequent terms determine the constants of couple theories and describe the effects of 
spatial and frequency dispersion. It is assumed in (1.1) that k and o are independent variables. 
If it turns out during the calculations that the effective characteristics of the composite are 
constant, then the composite, as a macroscopically homogeneous medium, is described by the 
local theory of elasticity. If, however, the Fourier transforms of the effective characteristics 
have the form of expansion (l.l), the composite complies with the non-local theory. 

Green’s function of a composite medium in the case of a dynamic elastic problem wilI be 
determined below. It is known ]lO] that the Fourier transforms of Green’s functions are 
identical for the local and non-local theories, only, in the first case, they are expressed in terms 
of the constants a, and, in the second case, in terms of the function a*(k; w). This enables one 
to formulate an algorithm for calculating the effective characteristics which is common to both 
types of theory. 

It is as follows. Green’s function of a dynamic elastic problem G(k; w) for a composite 
medium is found. The procedures of averaging and passing to the long wavelength limit are 
carried out. The resulting Green’s function (G(k; o)) describes a macr~copically and 
statistically homogeneous material. Its Green’s function G*(k; co) is known and expressed in 
terms of the effective characteristics a*(k; w). The equation 

(G(Ic;w)) = G*(k;o) (1.2) 

then enables one to determine A *( k; o). 

2. GREEN’S FUNCTION OF A COMPOSITE MEDIUM 

The phase geometry of the medium is described by a random function O(x) equal to unity if 
the radius vector x falls within an inclusion and zero otherwise. For the arbitrary constant of 
the composite, we have 

a(x)=a, (l-43(x))+a2 e(x)= (a)tAaA6(x) 

(a)=al (1-c)ta?c; Aa=a?-aI 

c=(@(x)) = “! / @(x)dV; AQ(x)=Q(x)-c 
VV 

(2.1) 

The subscripts 1 and 2 indicate the matrix and the inclusions, respectively, c is the volume 
fraction of the inclusions, V is the volume of the sample, and the symbol A is only used as a 
difference operator. 

The equation of motion of a composite medium in the displacements u has the form 

(To ij+ W/) uj = 0 

a2 
r0ij = -W&f at’ - + (Ciljm & 

1 m 

(2.2) 

a2 a 
w/ = -A~AWx)bjp + Awn ax 

-A@(x)+ 
I m 
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Here 4 is the Kronecker delta, p is the density, and c”,,,, is the elasticity tensor which, in the 
case of an isotropic medium, is equal to 

Cilim = ~6fisfm +P(6i/61m + 6im 6/l) (2.3) 

where il and p are Lame constants. 
Green’s function G,, (x, i, t) of Eq. (2.2) is determined from the relationship 

(rOij + h$) Gj, (x, x’; 0 = --&, 6 (x-x’) 6 (r) (2.4) 

The boundary conditions to Eq. (2.4) will be discussed below. 
We change from the coordinate-time representation (x; r) to the frequency-wave represent- 

ation (k; o) using the formulae 

f(k; W) = J J f (x; t) exp [-i (kx-w t)] dvdt 
V 

f(w) = $- I + k I2 fQ;W)exp [i(kx-wr)) do 
(2.5) 

since media based on a periodic structure will be considered. Equation (2.4) leads to the 
following integral equation for Green’s function 

G(k,k’;w) = VG, (k;U)&k’ + ; Z Go ~;W)W~,k,;w)G(kl,k’;o) 
k, 

(2.6) 

Here VG,(k; o)s, is Green’s function for a dynamic problem in the theory of elasticity for a 
homogeneous medium characterized by physical constants (a) defined using the rule of 
mixtures (the second relationship of (2.1)). The expression for G,(L; o ) is obtained from the 
equation 

roij (k; 0) Gojl Q; 0) = -S,I (2.7) 

Here 

rol,(k;w)=((~)k2-(p)w2)S~,t+~t+Cokrk~ 

Go,/ (k; o) = ((cc ) k2-( P > 02)-l (6,,-II (k; o) nl q) 

n (k.w) .i’+Cc’k2 ki = , 
(h+2p)k2-_(ph2,' “‘=k 

(2.8) 

The tensor 

w, (k,k’;w)=(Ay CABIN,- A cillm k,k:,) A 8 (k-k') = 

= W',j (k, k’; o) A 8 (k-k’) (2.9) 

may be referred to as the perturbation tensor since it contains the differences in the constants 
Aa and information on the shape and relative arrangement of the inclusions which is included 
in A@(k-k'). 

Equation (2.6) is referred to as an equation of the Dyson type, and its solution, obtained 
iteratively, has the form 

G(k,k’;w)=VG,, (k;o)&& ~+Go(k;w)W(k,k’;w)Go(k’;o)+ 

+I,, t Go @;w)W(k,kl;w)Go tk,,o)Wtk,,k’;o)Go (k’;w) +... (2.10) 
1 
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3. MODEL OF A COMPOSITE MATERIAL.AVERAGING OF GREEN’S FUNCTION 

Up to now, the treatment has been carried out within the framework of the local theory of 
elasticity. The non-local character manifests itself in the theory at the stage when series (2.10) is 
averaged [ll]. 

A sequential non-local theory must contain characteristic scales of the length parameter which are 
small compared with the characteristic dimensions of the body [lo]. On the other hand, the treatment of 
wavelengths, commensurate with the scale parameter, which may be the characteristic size of an inclusion, 
is permitted in the theory. Distances smaller than the scale parameter are excluded from the treatment. 
Hence, on the one hand, the theory must be continuous and, on the other hand, it must have a “lattice” 

character. Such a theory can be constructed using the concept of a quasicontinuum [lo]. 

The model of a composite material, where the idea of a quasicontinuum is realized, is 
constructed in the following manner. Let Z$ be the mean size of an inclusion and let there be N 
cubes with a volume u,, = g. Moreover, n of these cubes are made of the material of the 
inclusion while the remaining N-n cubes are made of the matrix material. Just like a crystal is 
constructed from unit cells, we construct the composite medium from hatched and unhatched 
cubes by arranging them in a random manner. As a result, one obtains one of the forms of a 
stochastic medium in a periodic lattice, which the two-dimensional spatial lattice of squares 
(the hatched squares are the inclusions and the unhatched squares are the matrix) shown in 
Fig. 1 illustrates. The nodal points of the lattice, which are indicated by the open circles, are 
found from the relationship 

R = miRai (3-l) 

where m, are integers and R, is a vector along the Cartesian axis i which has a length &. 
The significance of the idea of a quasicontinuum involves the establishment of a one-to-one 

correspondence between functions with a discrete argument and a certain class of continuous 
functions. This correspondence is realizable [lo] if the continuous functions can be represented 
as the superposition of long waves characterized by wave vectors k lying within the range 

In crystal physics, the domain (3.2) is referred to as the first Brillouin zone of the reciprocal 
lattice of the crystal. We shall henceforth retain this nomenclature assuming that it will not lead 
to any misunderstandings. It is obvious that the use of waves from the range (3.2) infers that 
short waves with lengths A c 2% are excluded from the treatment. 

FIO . 1. 
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There is yet one more fact requiring elucidation. On a macroscale, the composite is statistic- 
ally homogeneous. This means that the moments of various order of the random fields of the 
composite are independent of the absolute values of the coordinates but depend on their 
differences. For example, (a(x = f(xl -x2). In the case of a sample with finite dimen- 
sions, this condition is violated in a narrow boundary layer. In order to avoid the effect of the 
narrow surface layer, we adopt so-called cyclic boundary conditions [12]. Under these condi- 
tions, the transition from the (x;t)-representation to the (k; w)-representation and the inverse 
transition are made using formulae (2.5). Here, the vector k lies in the domain (3.2). 

The averaging of series (2.10) is carried out on the lattice (3.1). Let us introduce the random 
numbers @,), which are equal to unity if the centre of gravity of an inclusion is located at the 
nodal point of the lattice R, and zero otherwise. Then, describing the shape of an isolated 
inclusion found at R, by the deterministic function @,(x-R,), we find 

AQ(x) = h ATI( (x-b) 
a=1 

A 8 (k-k’) = i A n (IQ) 8,, (k-k’) exp [--i(k-k’) &I 
a=1 

(3.3) 

Up to now the theory has been constructed taking account of both spatial and frequency 
dispersion. We note that the spatial dispersion may be attributable either to the microstructure 
of the medium (the physical non-local character) or to the finite size of the inhomogeneity (the 
geometric non-local character) [lo]. At this stage, we exclude the spatial dispersion associated 
with the finite size of an inclusion by assuming the inclusions to be “point” inclusions and set 

0 (x-&j = u. S (x-b), Q. (k-k’ = 0) = u. 

We average (2.10) over the ensemble of systems, each being one of the forms of stochastic 
medium on the lattice (3.1) similar to that shown in Fig. 1. All the systems of the ensemble are 
equiprobable. Then 

As can be seen from the structure of the series (2.10) products of the type A?&)A?j(R,) . . . 
Aq(R,) are subjected to averaging. The zeroth term of the series does not contain these 
numbers. After averaging, the first term of the series disappears as (A@,))= 0. When 
determining (Aq(R,)Aq(R,)) in the second term, it is necessary to take into account whether 
R, and R, are identical or not. If they are not then, by virtue of statistical independence 

If they are, then 

(AvWdAr)(Rg))L~ = <(Ao(&))‘>= ; f (r/(k)-c)‘=c(l-c) 
a- 1 

When averaging the nth term of the series, one has to take account of all cases of the 
partitioning of a set of IZ points into all possible subsets. Within the limits of each subset, 
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consisting of m points, all the arguments R, (i = 1, 2, . . . , m) are identical. The corresponding 
calculations, which enable one to carry out the accurate retention of all the terms of series 
(2.10) taking account of the fact that, during averaging, each of them is decomposed into a 
certain number of terms, can be accomplished using a diagrammatic technique [13]. 

Analysis shows that a certain class of diagrams which are characterized by the intersection of 
the correlation lines, is described by analytic expressions containing polynomials in powers of 
the wave vector k even in the limit of “point” inclusions. These diagrams then describe the 
contribution of the spatial dispersion due to the microstructure of the medium. Excluding 
these diagrams from the treatment, we make use of the results of the summation of the infinite 
subsequence of all diagrams without intersection of the correlation lines [13]. Green’s function 
corresponding to this subsequence has the form V(G(k; o))&., where (G(k; w)) is the 
solution of the algebraic equation 

R(k;W)= ; x,, W, Or,k;w) 
n-2 

(3.4) 

II-1 

W, (k, k,; w) = t-$) L‘ W’(k,k,;w;G, ~~;~~W’~,,k~;~)... 
k , . ..k.-1 

. ..Go &..,w)W’(kn-Jw4 

and the tensor W’(k, k, k’; co) is defined by formula (2.9). The quantities x, are the nth order 
cumulants of a random quantity which takes two values: 1 -c with probability c and -c with 
probability 1 - c. The cumulants x,, are as follows [14]: 

fnPl (_Q+-’ 
Xn =x - cp, c;“--2’ cs (l-c)8 {l-2 c)+2s (3.5) 

5= 1 S 

and have the generating function 

x(t) = ; xnt” =-%(I-JIt-(l-zgtttz)~), $=I--2c 
n= 2 

(3.6) 

4. DETERMINATION OF THE EFFECTIVE CHARACTERISTICS 

Using (1.2) and the fact that, in the case of a homogeneous medium, the functions G&k; 0) 
and F,(k; w) are related by Eq. (2.7), let us rewrite Eq. (3.4) in the form 

f*fk;w)=ro (k;o)tR(k;w) (4.1) 

The function l?,(k; w) is defined by the first equation in (2.8) and T*(k; o) is defined by the 
same equation in which, however, a*(k; w) are substituted for the characteristics (a), deter- 
mined using the rule of mixtures. The problem therefore reduces to calculating the tensor 
R(k; w). 

The tensors W,, satisfy a recurrence equation with the initial condition 

%+I Q,k+r ; a) =+; Wnik,kn;w)Gofk,;w)W'(k,,k,+~;w) 
n 

(4.2) 

WI Or,k,;w)=W’(kk~;w) (4.3) 
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Putting 

Cijlm = -A Cljlm = 3 KVijlm + 2 Wjrm 

K= -Ah-2/S Ap, M=-Ap 
(4.4) 

where V,, and Q,,,, are the volume and deviator components of the fourth-rank unit tensor 
respectively, we write (2.9) in the form 

$,(k,k’;u)=Pw26ij+Ct,jm k,k’,, P=-AP (4.5) 

We will assume that 

ti”)(k,k,;w)=P, w26tj+CIl;l, 
‘I 

k, k,;’ (4.6) 

C’n;‘, = 3 K, Vfljm + 2 Mn Dtljm (4.7) 

and prove this representation by induction. It is obvious that the formulae hold when n = 1 and 
that P1 = P, Kl = K, Ml = 1. We now substitute expressions (4.5) and (4.6) and the second 
relationship of (2.8) into (4.2) and replace the sum in (4.2) by an integral according to the rule 
P21 

where the integration is carried out over the first Brillouin zone (3.2) which has a volume 
(~K)‘/v,. This integration is replaced by integration over a sphere of equal volume 4&/3 (the 
Debye model of a quasicontinuum which is applicable to isotropic media [lo]). The integrals 
which arise here exist in the sense of the principal value. Integrating, we arrive at formulae 
(4.6) and (4.7) with n replaced by n+l 

P ?I+1 =aP,. a!=(P/(p))(2B((z,))+B((q))) 

K n+l = fi K,, P = (K/( X + 2 cc )) (1 + 3 B ((zl ))) 

2M (3ht81r) 2(/l) 
wl+1 =yM,,, ,y= - 

5 (cc> ( (h+211) 
+3B((z,l)+ 

(ht21.0 
B (( zz 9 ) (4.8) 

l-z 
B (z)=z2 (1 t ‘z In -) 

1 +z 

(64 
(s,)=-w-- (- 

3 ‘13 2n 

70 
(~) ), (Q=W ( 

(P) ?4 

70 (Xt2p)) ' 
To=%) -&- 

Equalities (4.8) yield recurrence relationships for the quantities occurring in (4.6) and (4.7), 
where 

P,, =Pd’-‘, K,, =KP”--‘, M,, =My”-’ (4.9) 

Calculating the function W,(k, k,; w) from (3.4) using (4.6), (3.5) and (3.6), we find 

&j 0~ a) = (m2 x (7)/r + P a2 x @)/a) 6 rj + 

+ (K x GYP + % M x (7)/r) kl kj (4.10) 

Finally, using (4.1), (4.10) and (2.8), we obtain the system for determining the effective 
characteristics 
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cc * = (II)-MX(.Y)IY 

x*+/J*= (A+C1)-KX(P)/P-%Mx(7)/7 (4.11) 
p” = (p)+Px(ol)/a 

The effective characteristics are determined [13] from systems of the type of (4.11) using the 
iterative procedure which we will use below in the numerical solution. The mean character- 
istics (a} are initially substituted into expressions of the type x(cl>la and the characteristics in 
the first approximation are then calculated. Next, they are again substituted into x(a)la, 
instead of (a), and the characteristics in the second approximation are obtained. The process is 
then repeated. On some, generally speaking, infinite step, the output characteristics cease to 
differ from the input characteristics. They are then accepted as the true values of the effective 
characteristics. Under these conditions, system (4.11) has the form 

1+3B(z9 = (K*t;P*)(& t 

1-C 
------I 

1 K*-K2 

2/J* l-c 
1 t 3 B(z;)+ (1+3B(z;))=; P*&+ ---) 

3K*t4p* I-c*+2 

2B(z;)+ B(z;)=-/I*(~ 
l-c 

+--- 
p*-PI p*-P2 

) 

(4.12) 

(K is the bulk modulus of elasticity). 

5. DISCUSSION OF THE RESULTS 

The functions B(z*) which occur in system (4.12) depend solely on the frequency. The latter 
means that the effective characteristics a*(k; w) obtained as the solution of Eqs (4.12), are 
functions of the frequency and describe the frequency dispersion accompanying the propag- 
ation of elastic waves in a composite. 

Frequency dispersion occurs in a medium during the occurrence of internal processes, the 
flow time of which is comparable to the period of the change in the external field. In this 
frequency domain, the response of the system to a change in the external field is retarded and 
the field in the medium at the given instant starts to depend on the applied field at the 
preceding instants of time. It is seen from the expression for (z) in (4.8) that the quantities z$ 
and z: have the form z*=ot,, where t,=&l(j~*/@)“~or t0=R,,l((A*+2~*)/p*)“2 are the 
times during which elastic waves travel the distance R,,. 

The question arises as to the mechanism of the appearance of non-local inertial character- 
istics. The concept of “connected masses” [15], which is well known in hydrodynamics, may 
serve [lo] as one of the sources of non-local behaviour. 

Setting o = 0 in (4.12), we find the system for the static effective characteristics 

(Ko-K,)(Ko-&)=(Ko +% ~co)(Ko-(K)) 

(Ko +2clo)olo-~c,)(~o-c(,)=s~z~o(Kot4~~~, @O-(P)) (5-l) 
PO=(P) 

Equations (5.1) are identical to the equations in the method of self-consistency [16]. 
In the limit of weak dispersion when 

u* (k;o)=ao +fz;w2 



Frequency dispersion of elastic waves in disordered composites 699 

we find from (4.12) and (5.1) that 

3p,/r; =Ki(l-cA:-(l-c)A:)t?s I(; 

3 PC&l = Z/s (CB: t(l-c)B:)K;+(l-s/* ccV/* (l-c)c:)~; 6.2) 

Pi = 
c(l-c)@s-Pi)2 2Ko+11/3CLo 

7’0 PO (Ko + % P,) 

A, = 
Ko + % cl0 Cc0 

Ko -Kq 
, B,=- 

Ko -K, 
) c, L!L 

PO--llq ’ 
q= 1,2 

It is better to use system (4.11) and the iterative procedure described above for the numerical solution. 

The constants for a glass+zpoxy material were employed as the initial constants: Kl = 4.17 x109 Pa, 
H = 0.9 x lo9 Pa, A = 1.2 x lo3 kg/m3; & = 73.5 x lo9 P a, & = 29.4 x lo9 Pa, p2 = 2.58 x lo3 kg/m3. 

In the numerical solution, the iterative process was terminated when the relative difference between the 
input and the output became less than 0.1%. If the required accuracy had not been attained after lo3 
iterations it was assumed that there was no solution. The results of the calculation are presented in Figs 2- 
5 for c = 0.5. Qualitatively similar results also hold for other values of c. 

Figure 2 shows the dependence of the velocity of propagation of transverse elastic waves 
V, = (p * lp*)“* on the parameter w = w/r, = (4a/3)1’3vZ$, where v is the frequency of the wave. Using the 

condition il> 24, it can be shown that z, < X(4~13)“~=0.806, z, < 0.806, that is, with the same scales 
along the coordinate axes, the plot u, = V,(W) must lie above the bisector of the coordinate angle as is also 
shown in Fig. 2. The same also holds in the case of longitudinal waves. 

Figures 3-5 show graphs of the dynamic effective moduli of elasticity K* and p* and the effective 

density p* as a function of the parameter w. The dashed lines correspond to the case of weak dispersion. 

We note the occurrence of a boundary value w0 = 1148 m/s, above which no solution is found. In the case 

of coarsely dispersed media (2, is large), significant dispersion of the waves is displayed in a lower 
frequency domain than in the case of finely dispersed media. Finally, the numerical analysis showed that 
the plots shown in Figs 2-5 can be described by polynomials from w* up to wl’ or 0”. The latter means 
that the results are obtained in the strong dispersion approximation. 

The results of the calculation shown in Figs 2-5 can be subjected to experimental verification. Here, it 

must be remembered that spatial and frequency dispersion as well as the dispersion due to visco-elastic 
effects simultaneously make a contribution to the experimental results. It is therefore initially necessary to 
evaluate the relative fraction of each of these contributions in each actual case. As far as comparison with 
known theoretical results is concerned, there is qualitative agreement in the limit of weak dispersion to 
which the majority of papers refer. For example, the dependence of the phase velocity of longitudinal 

waves on the frequency for the scattering of Rayleigh waves by a system of chaotically arranged inclusions 

is of the same character [17] as in the case under consideration. The analogous dependences for a regular 
laminated composite, for which an exact solution may be obtained, behave in the same manner at low 
frequencies. 

In the limit of weak dispersion, it is possible to find the equation of the non-local theory of 
elasticity, which the composite obeys on a macroscale. This equation in the displacements has 
the form 

pi a4n/a t4 + I a2da r2~,,V2u-(ho t fro) grad div u = q 

I= po-(&V2 t (hi t &grad div) 
(5.3) 

(q is the density of the external forces and Z is the operator of the inertial properties of the 
medium). 

The proposed model of a composite medium and the algorithm for calculating the effective 
characteristics can be used for fields of an arbitrary physical nature. 

The author thanks Yu. I. Karkovskii for discussions and help. 
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